States of matter

- Intermolecular forces are the forces of attraction and repulsion between interacting particles.
- Attractive intermolecular forces are known as van der Waals forces. it is important to note that attractive forces between an ion and a dipole are known as ion-dipole forces and these are not Van der Waals forces.
- London forces

The London dispersion force is the weakest intermolecular force. It is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles. This force is sometimes called an induced dipole-induced dipole attraction. London forces are the attractive forces that cause non-polar substances to condense to liquids and to freeze into solids when the temperature is lowered sufficiently.

symmetrical distribution

unsymmetrical distribution

- These forces are always attractive and interaction energy is inversely proportional to the sixth power of the distance between two interacting particles (i.e., $1 / r 6$ where r is the distance between two particles).

Dipole-dipole forces

- Dipole-dipole forces are attractive forces between the positive end of one polar molecule and the negative end of another polar molecule. Dipole-dipole forces have strengths that range from 5 kJ to 20 kJ per mole. They are much
weaker than ionic or covalent bonds and have a significant effect only when the molecules involved are close together (touching or almost touching).

- Polar molecules have a partial negative end and a partial positive end.
- The partially positive end of a polar molecule is attracted to the partially negative end of another

Dipole Induced Dipole Forces

- A dipole-induced dipole attraction is a weak attraction that results when a polar molecule induces a dipole in an atom or in a non-polar molecule by disturbing the arrangement of electrons in the non-polar species.

Spherical atom with no dipole. The dot indicates the location of the nucleus.

Upon approach of a molecule with a dipole, electrons in the atom respond and the atom develops a dipole.

Hydrogen bonding

- The hydrogen bond is really a special case of dipole forces. A hydrogen bond is the attractive force between the hydrogen attached to an electronegative atom of one molecule and an electronegative atom of a different molecule. Usually the electronegative atom is oxygen, nitrogen, or fluorine, which has a partial negative charge. The hydrogen then has the partial positive charge. Hydrogen bonding is usually stronger than normal dipole forces between molecules.

Boyle's Law

- At constant temperature, the pressure of a fixed amount (i.e., number of moles n) of gas varies inversely with its volume. This isknown as Boyle's law.
$\mathrm{pV}=\mathrm{K}$
$p_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$
$p_{1} / p_{2}=V_{1} / V_{2}$
p- Pressure, V-volume, K-constant.
- At a constant temperature, pressure is directly proportional to the density of a fixed mass of the gas.

Charles Law

- Charles' Law describes the direct relationship of temperature and volume of a gas. Assuming that pressure does not change, a doubling in absolute temperature of a gas causes a doubling of the volume of that gas. A drop of absolute temperature sees a proportional drop in volume. The volume of a gas increases by $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$ for every degree Celsius that the temperature rises.

Temperature $=$ Constant x Volume
or
Volume $=$ Constant \times Temperature
or
Volume/Temperature $=$ Constant

- Mathematically,
$\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$

Gay Lussac's Law

- At constant volume, pressure of a fixed amount of a gas varies directly with the temperature.
- Mathematically,
$\mathrm{P} / \mathrm{T}=$ constant

Avogadro's Law

- It states that equal volumes of all gases under the same conditions of temperature and pressure contain equal number of molecules.
- Mathematically,
$V=k^{*} n$
$\mathrm{k}=$ Avogadro number $=6.023 * 10^{23}$

Ideal Gas Equation

- A gas that follows Boyle's law, Charles' law and Avogadro law strictly is called anideal gas
- Mathematically,
$\mathrm{pV}=\mathrm{n} R T$.
- R is called gas constant. It is same for all gases. Therefore it is also called UniversalGas Constant and its value is = $8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

Combined Gas Law

- $\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$

Density and Molar Mass of a Gaseous Substance

- $M=d R T / p \quad$ (d=density)

Dalton's Law of Partial Pressures

- The total pressure exerted by the mixture of non-reactive gases is equal to the sum of the partial pressures of individual gases.
- $\mathrm{p}_{\text {Total }}=\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3+\ldots .$. (at constant T, V)
- Pressure exerted by saturated water vapour is called aqueous tension. Aqueous tension of water at different temperatures.
- $\mathrm{p}_{\text {Dry gas }}=\mathrm{p}_{\text {Total }}-$ Aqueous tension

Partial pressure in terms of mole fraction

- $p_{i}=x_{i} p_{\text {total }}$
where x_{i} is mole fraction.

BEHAVIOUR OF REAL GASES: DEVIATION FROM IDEAL GAS BEHAVIOUR

- Due to the failure of the following two assumptions of the Kinetic gas theory the deviation is observed.
- There is no force of attraction between the molecules of a gas
- Volume of the molecules of a gas is negligibly small in comparison to the space occupied by the gas.
- The deviation from ideal behaviour can be measured in terms of compressibility factor Z, which is the ratio of product pV and nRT .
- At high pressure all the gases have $Z>1$. These are more difficult to compress. At intermediate pressures, most gases have $Z<1$. Thus gases show ideal behaviour when the volume occupied is large so that the volume of the molecules can be neglected in comparison to it.
- The temperature at which a real gas obeys ideal gas law over an appreciable range of pressure is called Boyle temperature or Boyle point. Boyle point of a gas depends upon its nature. Above their Boyle point, real gases show positive deviations from ideality and Z values are greater than one. The forces of attraction between the molecules are very feeble. Below Boyle temperature real gases first show decrease in Z value with increasing pressure, which reaches a minimum value.

Sample Examples

- A balloon is filled with hydrogen at roomtemperature. It will burst if pressureexceeds 0.2 bar. If at 1 bar pressure thegas occupies 2.27 L volume, upto whatvolume can the balloon be expanded ?

Solution
According to Boyle's Law p1V1 = p2V2
If p 1 is 1 bar, V 1 will be 2.27 L
If $\mathrm{p} 2=0.2 \mathrm{bar}$, then
$\mathrm{V} 2=\mathrm{p} 1 \mathrm{~V} 1 / \mathrm{p} 2=1 * 2.27 / 0.2$
$\Rightarrow V==11.35 \mathrm{~L}$
Since balloon bursts at 0.2 bar pressure,the volume of balloon should be less than 11.35 L .

- At $25^{\circ} \mathrm{C}$ and 760 mm of Hg pressure agas occupies 600 mL volume. What willbe its pressure at a height wheretemperature is $10^{\circ} \mathrm{C}$ and volume of thegas is 640 mL .

Solution

$P_{1}=760 \mathrm{~mm} \mathrm{Hg}, \mathrm{V}_{1}=600 \mathrm{~mL}$
$\mathrm{T}_{1}=25+273=298 \mathrm{~K}$
$\mathrm{V}_{2}=640 \mathrm{~mL}$ and $\mathrm{T}_{2}=10+273=283 \mathrm{~K}$
According to Combined gas law, $\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$
Substituting the values of $P_{1}, V_{1}, T_{1}, V_{2}, T_{2}$ in the above equation,
$P_{2}=676.6 \mathrm{~mm} \mathrm{Hg}$

- On a ship sailing in pacific ocean wheretemperature is $23.4^{\circ} \mathrm{C}$, a balloon is filledwith 2 L air. What will be the volume ofthe balloon when the ship reaches Indianocean, where temperature is $26.1^{\circ} \mathrm{C}$?

Solution

$V_{1}=2 L$
$\mathrm{T}_{2}=(26.1+273) \mathrm{K}=299.1 \mathrm{~K}$
$\mathrm{T}_{1}=(23.4+273 \mathrm{~K})=296.4 \mathrm{~K}$
From Charles law, $\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
Substituting the values of $\mathrm{V}_{1}, \mathrm{~T}_{1}$ and T_{2} in the above equation, we get
$V_{2}=2.018 \mathrm{~L}$.

